q = -2P + 320
The total revenue depends on the price and is given by, R = pq
R = p (-2p + 320)
= -2p² + 320p.
The above expression is a quadratic function of the form R (p) = ap² + bp + c, where a = -2, b =320, and c = 0. Since is a negative the graph of the above function is a parabola. Therefore, the vertex of the graph is the highest point.
P = – b = – 320 = $80
2a -4
R = -2p² + 320p
= -2(80)² + 320(80)
= -12,800 + 25,600
= $12,800
Year x | 0 | 5 | 10 |
Index y | 50 | 200 | 500 |
Year (x) | Index (y) | xy | x² | |
0 | 50 | 0 | 0 | |
5 | 200 | 1000 | 25 | |
10 | 500 | 5000 | 100 | |
Sum | 15 | 750 | 6000 | 125 |
^y = mx + b
Where, n = 3
m= n(∑xy) – (∑x) (∑y)
n(∑x²) – (∑x)²
= 3(6000) – (15) (750) = 18,000 – 11,250 = 45
3(125) – 15² 375 – 225
b= ∑y – m(∑x)
n
= 750 – 45(15) = 750 – 675 = 25
3 3
y = 45x + 25
y = 45x + 25
The index for 2011 is given by substituting x = 11.
Y = 45(11) + 25
= 520
Year | Barrel Oil ($)
(x) |
Continental Net Income ($ million) (y) | xy | x² | Y² |
2005 | 56 | -70 | -3,920 | 3,136 | 4,900 |
2006 | 63 | 370 | 23,310 | 3,969 | 136,900 |
2007 | 67 | 430 | 28,810 | 4,489 | 184,900 |
2008 | 92 | -590 | -54,280 | 8,464 | 348,100 |
2009 | 54 | -280 | -15,120 | 2,916 | 78,400 |
210 | 71 | 150 | 10,650 | 5,041 | 22,500 |
∑ | 403 | 10 | -10,550 | 28,015 | 775,700 |
(Part a – d are 1 point each) a. What is n = 6 b. What is ∑xy = -10,550
^y = mx + b
m= n(∑xy) – (∑x) (∑y)
n(∑x²) – (∑x)²
m= 6(-10,550) – (403) (10) = -63,330 – 4030 = -11.857
6(28,015) – 403² 168,090 – 162,409
b= ∑y – m(∑x)
n
b= 10 – (-11.857) (403) = 10 + 4778.371 = 798.06
6 6
y= -11.857x + 798.06
r= n(∑xy) – (∑x) (∑y)
√n(∑x²) – (∑x)² × √n(∑y²) – (∑y)²
r= 6(-10,550) – (403) (10) = -63,300 -4030
√6(28,015) – 403² × √6(775,700) – 10² √5681 × √4654100
r= –67330
75.37 × 2157.34
r= -67330 = -0.4141
162,598.716
The coefficient of r is negative; therefore, it suggests that an increase in the prices of oil is associated to a decrease in the Continental’s net income.
Do you need an Original High Quality Academic Custom Essay?